In Situ “Doping” Inverse Silica Opals with Size-Controllable Gold Nanoparticles for Refractive Index Sensing

Zhongyu Cai,†‡ Yan Jun Liu,§ Xianmao Lu,*† and Jinghua Teng*§

†Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
‡Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
§Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602

ABSTRACT: We report the fabrication of inverse SiO2 opals “doped” with gold (i-Au-SiO2-o) nanoparticles (NPs) via a co-self-assembly method combined with subsequent removal of polystyrene colloidal spheres by calcination. The resulting i-Au-SiO2-o films demonstrate long-range ordering with uniform distribution of ligand-free Au NPs. The size of Au NPs can be tuned from 6 to 30 nm by varying the calcination temperature. The as-prepared i-Au-SiO2-o films preserve both localized surface plasmon resonance (LSPR) and Bragg diffraction peaks simultaneously. Both LSPR and Bragg diffraction peaks are sensitive to the refractive index changes of the surrounding medium—an important feature for sensing applications. The method provides a facile and versatile way to fabricate high-quality Au NP “doped” photonic crystals for applications in sensing and others.

1. INTRODUCTION

Noble metallic nanoparticles (NPs) have attracted intense interests owing to their unique optical properties and have found extensive applications in areas, such as catalysis,1 sensing,2−5 and solar cells.6,7 The root of their unique optical properties is the localized surface plasmon resonance (LSPR)—a phenomenon caused by the collective oscillation of surface electrons excited by incident light.8,9 The LSPR of noble metal NPs is very sensitive to their geometrical and physical parameters, such as size, shape, composition, the distance between NPs, and the refractive index of the surrounding medium.5,9,10 Another vastly studied optical property of nanostructured systems is the diffraction of light when a periodic modulation of the dielectric constant is achieved in the length scale of several hundreds of nanometers. Such systems are commonly termed as photonic crystals (PhCs), which has emerged as one kind of new optical material for various applications in photonics, water treatment, solar cells, and so on.11−14 The hybridization of PhCs and noble metallic NPs can lead to structures with both LSPR and a photonic band gap (PBG) simultaneously.15−17 opening up a whole range of possibilities for many applications, such as tunable photonic devices, biolabeling, and sensing.18−20

One common example of the hybridization of PhCs and noble metallic NPs is to immobilize as-synthesized Au NPs to a PhC. Gu et al. reported a dipping method to immobilize Au NPs on the surface of a prefabricated three-dimensional (3D) ordered SiO2 opal film15 and observed both LSPR of the NPs and the stop band of the PhC structures. Comparing with opal structures, inverse opals with both resonance peaks and diffraction peaks are especially desirable because they combine the advantages of high surface area with the accessible diffusion pathways associated with periodic macroporous structures.21−23 Nevertheless, such a kind of structure has rarely been reported. This can be attributed to two major reasons: (1) the uniform distribution of noble metal NPs is very hard to control, and (2) the metal-dielectric inverse opals are not robust enough to support the framework due to various defects.24 Few efforts have been made to overcome these impediments. A gold NP infiltrated polystyrene (PS) inverse opal was fabricated via a multistep approach, and both LSPR properties of Au NPs and photonic features of the PhCs were demonstrated.16,25 However, many local disorder and defects exist in such a kind of hybrid inverse opals, which affect their optical properties severely and subsequent applications. Even worse, such a PS inverse opal structure is not robust enough to maintain the framework. In addition, the presence of capping molecules on the as-synthesized Au NP surface is highly undesirable for sensing and biolabeling applications since it results in damping and broadening of the plasmon band.1,26 Therefore, Au “doped” silica (SiO2) inverse opals were fabricated using silica-coated Au NPs as infiltration material.21,27 However, the quality of the resultant Au-infiltrated SiO2 inverse opals was too poor to preserve both LSPR and PBG...
properties simultaneously. The cracks in the resultant films may cause the aggregation of Au NPs and consequently result in the plasmon coupling between particles in the proximity. In addition, these methods involve multistep fabrication (≥5 steps), and they are very time- and chemical-consuming. Thus, it remains challenging to achieve high-quality hybrids with both LSPR peaks and PBG peaks, which may give more accurate dual optical signatures.

Here, we report a facile coassembly method to fabricate high-quality Au NP “doped” inverse SiO2 opal (i-Au-SiO2-o) films over a large area. The Au NPs are uniformly distributed on the wall of the inverse SiO2 opal (i-SiO2-o) films. The effects of heat treatment temperature on Au NPs’ size and optical properties of the i-Au-SiO2-o films at different incident angles and ambient refractive index (RI) were investigated.

2. EXPERIMENTAL SECTION

Materials. All chemicals, including styrene (99%, Aldrich), potassium persulfate (99%, Aldrich), sulfuric acid (98%, Merck), hydrogen peroxide (35%, Scharlau Chemie S.A.), TEOS (98%, Aldrich), and hydrochloric acid (37%, Sigma-Aldrich), were used as received. HAuCl4·3H2O (49%, Aldrich) were used to prepare 0.02 M HAuCl4 solution. Microscope cover glasses (22 mm × 22 mm × 0.3 mm, Deckgläser) were used as substrates for the fabrication of crack-free i-Au-SiO2-o film. The glass substrates were treated in a piranha solution (3:1 v/v 98% H2SO4/35% H2O2) at 60 °C for 2 h before usage (Caution! Piranha solution and ethanol present potential health and/or fire hazards. Appropriate precautions should be observed at all times.)

Preparation of i-Au-SiO2-o Film. The fabrication of i-Au-SiO2-o film was conducted in two sequential steps: (a) co-self-assembly of PS colloidal crystals (CCs) with TEOS and HAuCl4 and (b) calcination of the samples to remove PS (see Scheme 1). The fresh TEOS solution consisted of a 1:4:4 ratio by volume of TEOS, ethanol, and 0.02 M HAuCl4, respectively, stirred at room temperature for 1 h prior to use. For a typical process, 243.2 μL of a 5.14 vol % PS (277 nm in diameter) colloidal suspension (cleaned by centrifugation at 8000 rpm at least three times) and 80 μL of hydrolyzed TEOS solution were sequentially added to 10 mL of deionized H2O, and the mixture was sonicated for 5 min. The glass substrates were then vertically suspended in the vial containing the colloidal/TEOS suspension. The solvent was evaporated slowly over a period of 24 h in an oven at 65 °C without disruption to allow the deposition of a thin film onto the suspended substrate.

Afterward, the films were first calcined in air at 200 °C (0.5 °C/min) for 2 h to form Au NPs with a certain size, and finally at 450 °C (2 °C/min) for another 2 h, to completely remove the PS spheres and partially sinter the SiO2 frame structure. It should be noted that the first calcination temperature can be varied from 110 to 280 °C to produce different sizes of Au NP infiltrated i-Au-SiO2-o films.

Characterization. Scanning electron microscope (SEM) images of the PS CCs and i-Au-SiO2-o were recorded using a JEOL JSM-6700F field emission SEM (FESEM). A field emission transmission electron microscope (FETEM, JEOL JEM-2100F) was employed to analyze the structure of the 3D macroporous i-Au-SiO2-o films. Optical absorption spectra of the samples were measured with a Jasco V-530 UV−Vis spectrophotometer using unpolarized light. The absorption was measured at different angles, starting from normal incidence to 75° by increasing the angle in steps of 5°.

3. RESULTS AND DISCUSSION

Typical SEM images of PS/SiO2 hybrid CCs and i-Au-SiO2-o films are shown in Figure 1. Figure 1a demonstrates that highly ordered PS/SiO2 colloidal crystal film was fabricated without cracks over a large domain using the coassembly method. Monodispersed PS spheres (277 nm in diameter) were assembled in a large domain (>500 × 500 μm²) with long-range ordering (Figure S1 in the Supporting Information). The fast Fourier transformation (FFT) in Figure S1 (Supporting Information) indicates the high crystalline quality of the resultant CCs. By partially sintering the PS/SiO2 colloidal crystal films at high temperature, their inverse structures were obtained (Figure 1b–f). A top view of the inverse opal reveals that 3D well-ordered macroporous structures were interconnected and exhibited a narrow pore size distribution (<0.6%) (Figure 1b). This highly ordered macroporous structure extended over a large area (>100 × 100 μm²) without cracks (Figure 1c). This crack-free structural feature is very important since cracks may lead to aggregation of Au NPs and consequently result in a change of plasmon resonance and coupling among particles in the proximity, causing a shift of the resonant peak wavelength. Crack-free i-Au-SiO2-o films with different pore sizes can be fabricated by using PS beads of different sizes. Figure 1d shows an i-Au-SiO2-o film fabricated with 428 nm PS colloidal spheres. In this case, a well-ordered structure with periodic macropores was achieved, indicating the effectiveness of the coassembly method. Panels e and f in Figure 1 are the cross-sectional images of i-Au-SiO2-o film.
Highly ordered i-Au-SiO$_2$-o respectively. TEM methods based on chemisorption, which generally results in magnification. Size of samples were found uniformly distributed on the walls of the i-Au-SiO$_2$-o film at high magnification, respectively. (e, f) Cross-sectional views of i-Au-SiO$_2$-o film at low and high magnifications, respectively.

![Figure 1](image1)

Figure 1. SEM images of the samples: (a–d) Top views of the PS/SiO$_2$ colloidal crystal film (277 nm), i-Au-SiO$_2$-o film (277 nm), i-Au-SiO$_2$-o film (277 nm) at low magnification, and i-Au-SiO$_2$-o film (428 nm) at high magnification, respectively. (e, f) Cross-sectional views of i-Au-SiO$_2$-o film (277 nm) at low and high magnifications, respectively.

fabricated with 277 nm PS colloidal spheres at low and high magnifications, respectively. Long-range ordering and a uniform thickness of ~8 μm of the film can be observed.

TEM measurements were carried out to characterize the Au NPs inside the i-Au-SiO$_2$-o films when calcining the samples at 200 °C first. At low magnification (Figure 2a), a 3D periodically ordered i-SiO$_2$-o matrix can be observed with tiny dark dots (Au NPs) on the wall. A large amount of Au NPs were found uniformly distributed on the walls of the i-SiO$_2$-o film (Figure 2b). This cannot be achieved by conventional methods based on chemisorption, which generally results in uneven distribution or aggregation of Au NPs. A higher magnification image (Figure 2c) shows that the Au NPs are single crystalline with an average diameter of 6 nm. Figure 2d shows a clear crystalline structure of a single Au NP with the size of ~6 nm when calcinating the samples at 200 °C first.

In addition to the even distribution of Au NPs on the wall of i-Au-SiO$_2$-o films, it is also found that the size of Au NPs can be tuned via varying the calcination temperature. When calcined at 200 °C (Figure 2c,d), the average size of Au NPs was ~6 nm. Highly ordered i-Au-SiO$_2$-o films can also be fabricated in a relatively large domain at the sintering temperature of 240 °C. Figure S2a (Supporting Information) shows the Au NPs with an average diameter of 15.6 nm when calcinating the samples at 240 °C first. Figure S2c (Supporting Information) shows an individual Au NP with a clear crystal structure fabricated at the sintering temperature of 240 °C. From the TEM analysis, the individual Au nanocrystal has a lattice constant of 2.36 Å, corresponding to {111} plane of a Au nanocrystal (Figure 2c, d).

Supporting Information). When sintering the samples first at 280 °C, the size of Au NPs further increases to ~30 nm on average with a relatively uniform size, as shown in Figure S2d (Supporting Information). These results showed that the size of the Au NPs can be effectively tuned by the sintering temperature. The LSPR properties of the i-Au-SiO$_2$-o films can be consequently controlled since the plasmonic properties of Au NPs are sensitive to their sizes. In conventional methods, however, the size of Au NPs can only be tuned during the synthesis process, and subsequent chemisorption is needed. The chemisorption usually leads to uneven distribution or aggregation of Au NPs on the wall of the i-Au-SiO$_2$-o films. Moreover, the chemisorption of molecules onto nanoparticles has been demonstrated to alter the electronic properties of Au NPs and consequently their extinction spectrum. Further increasing the sintering temperatures, for example, to 300 °C, will cause the Au NPs to coalesce, resulting in a film with bulk Au properties (Figure S3, Supporting Information).

Despite the effectiveness of this method to fabricate high-quality i-Au-SiO$_2$-o films, to date, the underlying mechanism remains elusive to us. We believe that HAuCl$_4$ plays a vital role in the formation of high-quality i-Au-SiO$_2$-o films apart from acting as a source of Au NPs. While TEOS itself dissolves well in ethanol, its hydrolyzed form is hydrophilic and is, therefore, found inside the water-rich emulsion droplets. Under the catalysis of HAuCl$_4$, the TEOS sol will form interconnected networks, which may provide sites for the relaxation of capillary forces generated during the processes of self-assembly and drying stage and thus avoid the formation of cracks in the resultant film. In addition, controlled solvent release during the polycondensation reaction can also occur at the interfaces between the polymerizing sol–gel solution and the assembling PS colloidal spheres, and is channeled through the interconnected porous network to evaporate at the surface.

Compared to conventional methods in fabricating Au NP infiltrated inverse opal structures, our method is advantageous in the following aspects. First, high-quality samples can be fabricated in a controllable way. As shown in
the SEM and TEM images, crack-free i-Au-SiO₂-o films can be fabricated in a relatively large area (~500 × 500 μm²) without overlayers and the Au NPs can be uniformly distributed on the walls of the films. Moreover, the size of Au NPs can be tuned via calcination temperature. This approach provides a way to tune the response of the structure for applications, for example, sensors, with maximum sensitivity. Second, our approach is facile, cost-effective, and robust. In our approach, the Au NPs with tunable sizes can be simultaneously in situ “doped” into i-SiO₂-o film during the process of formation of 3D highly ordered i-Au-SiO₂-o films. The present co-self-assembly and subsequent calcination step make our method straightforward. Conventional methods for the fabrication of Au NP “doped” films or their inverse opals, however, often involve multiple steps, for example, synthesis of Au NPs, followed with chemisorptions of Au NPs on amine-functionalized opals or inverse opals. Amine-functionalized SiO₂ colloidal spheres are difficult to assemble into highly ordered CCs. In addition, the modification of opals with amine groups (>12 h) and fabrication of inverse opals are very time-consuming (~4–5 d). Our method avoids the steps of synthesis of Au NPs, colloidal crystal modification, and removal of the excess regent. Thus, the present method is very facile. Finally, the Au NPs fabricated by this method is ligand-free, which is advantageous over those conventional ones since chemisorption of thiols to the Au NPs results in damping and broadening of the plasmon band.^{1,26}

Au NPs are known to generate LSPR in the visible range, whereas PS CCs would have PBG characteristics. Figure S4a (Supporting Information) shows a typical UV–vis-NIR absorbance spectrum of the Au NP “doped” PS colloidal crystal film, where two characteristic peaks can be clearly observed. The absorption peak at 521 nm originates from the LSPR of individual Au NPs, whereas the other absorption peak at 612 nm arises from the pseudo stop band of the PS colloidal crystal template in a face-centered cubic (fcc) lattice. This is supported by both the SEM images shown in Figure 1a and the UV–vis-NIR absorbance spectrum of PS CCs (277 nm) in Figure S4b (Supporting Information) with a diffraction peak at 615 nm.

The diffraction peaks of PhCs depend on the incident angles and the effective refractive index of the surrounding media, whereas the LSPR peak position strongly depends on the size and shape of the particles as well as the dielectric properties of the surrounding media.^{10,26,35,36} Here, we studied the effects of incident angles and refractive indices (RI) of surrounding media on the absorption spectra of the i-Au-SiO₂-o films. Figure 3 shows the evolution of absorption spectra of the i-Au-SiO₂-o films at different incident angles. At the incident angle of 90°⁹, two clear absorption peaks at 357 and 522 nm can be observed, which are attributed to the Bragg diffraction and LSPR effects, respectively. This can be confirmed from the absorption spectrum of a SiO₂ inverse opal without Au NP “doping” but fabricated from the same size of PS spheres, which shows only one absorption peak at 357 nm (Figure S5, Supporting Information). With the decrease of the incident angle from 90° to 75°⁵, the Bragg diffraction clearly shows blue shifted peaks with a slightly increased peak intensity. The observed blue shifts can be attributed to the change in diffraction according to the Bragg equation.^{14,37} In contrast, the LSPR peak position does not change with incident angles. This is expected since the Au NPs are uniformly distributed on the wall of the i-SiO₂-o films and should generate incident-angle-independent resonance according to Mie’s theory.^{38,39} Therefore, the separation of LSPR and PBG peaks of the i-Au-SiO₂-o films can be effectively controlled by varying the incident angle.

In this study, deionized water, ethanol, 2-propanol, and n-butyl alcohol were used as dielectric media to investigate the sensitivity of the structure to external media change. The absorption spectra of the i-Au-SiO₂-o films infiltrated with different liquids in the interstices were measured and are shown in Figure 4. With the increase of the RI from 1.333 to 1.399, the Bragg diffraction peak red shifts from 350 to 365 nm, which can be attributed to the change in effective RI of the i-Au-SiO₂-o.⁴⁰ The LSPR peaks red shift from 522 to 533 nm as a linear function of the surrounding RI, giving a sensitivity of 166 nm/RI unit (Figure 4, inset) that is higher than the value reported in the literature.^{41–43} This can be attributed to the relatively uniform distribution of the Au NPs on the wall surfaces of the inverse opals. The Au NP “doped” SiO₂ inverse opal structure gives double indicators for RI change at both microscale from LSPR and macroscale from PBG, providing more confirmative information for sensing.
addition to a red shift of its resonance wavelength, an increase in the absorbance intensity can be observed as well, which is in accord with Mie theory.44

4. CONCLUSION

We have developed a facile method to fabricate high-quality i-Au-SiO$_2$-o films free of cracks over a large area (>100 x 100 μm2). The in situ “doping” of Au NPs with tunable sizes and the formation of a three-dimensional ordered macroporous structure occur in the same step. The Au NPs are uniformly distributed on the wall of i-SiO$_2$-o films. By controlling the sintering temperature, the size of the Au NPs can be effectively tuned from 6 to 30 nm. The i-Au-SiO$_2$-o films show both LSPR of individual Au NPs and PBG of i-SiO$_2$-o films, which serve as two indicators for sensing of change in RI of the surrounding medium.

ASSOCIATED CONTENT

Supporting Information
Absorbance spectrum of PS CCs infiltrated Au NPs, PS CCs (277 nm), and SiO$_2$ inverse opals (277 nm), and FETEM image of i-Au-SiO$_2$-o fabricated film fabricated via calcination at 240, 280, and 300 $^\circ$C. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
*Telephone: (65) 6516 1071 (X.L.), (65) 6874 8590 (J.T.). Fax: (65) 6779 1936 (X.L.), (65) 6872 0785 (J.T.). E-mail: chekm@nus.edu.sg (X.L.), jh-teng@imre.a-star.edu.sg (J.T.).

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Z.C. acknowledges a graduate scholarship from the National University of Singapore. This work was supported by the Ministry of Education of Singapore under Grant No. R279-000-298-112 and the Agency for Science, Technology and Research (A*STAR) under Grant Nos. 0921540099 and 0921540098.

REFERENCES

